ML Dahanukar College

Teaching Plan: 2020 - 21

Department: <u>I.T.</u> Class: <u>MSc.(I.T.) Part-I</u> Semester: <u>I</u>

Subject: Cloud Computing

Name of the Faculty: Mr Dhanraj Jadhav

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
	Unit I:		20
January	Introduction to Cloud Computing		
	Parallel and Distributed Computing		
	Virtualization		
	Unit II		
	Cloud Computing Architecture		
	Fundamental Cloud Security		
	Unit II: Industrial Platforms and New		16
February	Developments		
	Unit III:		
	Specialized Cloud Mechanisms		
	Cloud Management Mechanisms		
	Cloud Security Mechanisms:		
March	Unit IV:		12
iviaicii	Fundamental Cloud Architectures		12
	Advanced Cloud Architectures		
April	Unit V:		12
1	Cloud Delivery Model Considerations		
	Cost Metrics and Pricing Models		
	Service Quality Metrics and SLAs		
	Service Quality insules and BEI is		

Sign of Faculty Sign of Coordinator

P.T.V.A.'s M.L.Dahanukar College of Commerce

Teaching Plan: 2020 – 2021

Department: Information Technology

Class: M.Sc (part I) – Sem-I Subject: DATA SCIENCE

Name of the Faculty: Prof. Supritha Bhandary

Month	Topics to be Covered	Internal Assessment	Number of Lectures
JAN	DataScience Technology stack: Rapid Information Factory, Ecosystem, Data Science Storage Tools, Data Lake, Data Vault, Data Warehouse BusMatrix. Layered Framework: Definition of DataScience Framework, Cross-Industry Standard Process for Data Mining (CRISP-DM), Business layer, Utility layer.		16
FEB	Three Management Layers: Operational Management Layer, Processing-Stream Definition and Management, Audit, Balance, and Control Layer, Balance, Control, Yoke Solution, Cause-and-Effect, Analysis System, Functional Layer, DataScience Process. Retrieve Superstep,		16
MAR	Assess Superstep Assess Superstep, Errors, Analysis of Data, Practical Actions, Engineering a Practical Assess Superstep, Process Superstep: Data Vault, Time-Person-ObjectLocation-Event Data Vault, Data Science Process, Data Science		16
APR	Transform Superstep: Univariate Analysis Computer Vision(CV), NaturalLanguageProcessing(NLP),Neural Networks,TensorFlow. Organize and Report Supersteps Organize Superstep, Report Superstep, Graphics, Pictures, ShowingtheDifference		12

Sign of Faculty

Sign of Coordinator

M.L. Dahanukar College of Commerce

Teaching Plan: 2020 - 2021

Department: I.T. Class: M.Sc.(I.T.) Semester:I

Subject: Research In Computing

Name of the Faculty:LARISSA PEGADO

Month	Topics to be Covered	Internal Assessm ent	Number of Lectures
January	Introduction: Role of Business Research, Information Systems and Knowledge Management, Theory Building, Organization ethics and Issues. Beginning Stages of Research Process: Problem definition, Qualitative research tools, Secondary data research		20
February	Research Methods and Data Collection: Survey research, communicating with respondents, Observation methods, Experimental research Measurement Concepts, Sampling and Field work: Levels of Scale measurement, attitude measurement, questionnaire design, sampling designs and procedures, determination of sample size		20
March	Data Analysis and Presentation: Editing and Coding, Basic Data Analysis, Univariate Statistical Analysis and Bivariate Statistical analysis and differences between two variables. Multivariate Statistical Analysis.		20

M.L. Dahanukar College of Commerce

Teaching Plan: 2020 - 21

Department: I.T. Class: M.Sc.(I.T.) Semester:I

Subject: Soft Computing

Name of the Faculty: Srushty Padte

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
	Unit I- Introduction of soft computing, soft		20
January	computing vs. hard computing, various		
	types of soft computing techniques, Fuzzy		
	Computing, Neural Computing, Genetic		
	Algorithms, Associative Memory, Adaptive		
	Resonance Theory, Classification,		
	Clustering, Bayesian Networks,		
	Probabilistic reasoning, applications of soft		
	computing.		
	Unit II:Artificial Neural Network:		
	Fundamental concept, Evolution of Neural		
	Networks, Basic Models, McCulloh-Pitts		
	Neuron, Linear Separability, Hebb		
	Network. Supervised Learning Network:		
	Perceptron Networks, Adaptive Linear		
	Neuron, Multiple Adaptive Linear Neurons,		
	Backpropagation Network, Radial Basis		
	Function, Time Delay Network, Functional		
	Link Networks, Tree Neural Network.		
	Unit II: Associative Memory Networks:		22
February	Training algorithm for pattern Association,		
	Autoassociative memory network,		
	hetroassociative memory network, bi-		
	directional associative memory, Hopfield		
	networks, iterative autoassociative		
	memory networks, temporal associative		
	memory networks		
	Unit III: UnSupervised Learning Networks:		
	Fixed weight competitive nets, Kohonen		
	self-organizing feature maps, learning		
	vectors quantization, counter propogation		
	networks, adaptive resonance theory		
	networks. Special Networks: Simulated		
	annealing, Boltzman machine, Gaussian		
	Machine, Cauchy Machine, Probabilistic		
	neural net, cascade correlation network,		
	cognition network, neo-cognition network,		
	cellular neural network, optical neural		
	network		

	Third Generation Neural Networks: Spiking	
	Neural networks, convolutional neural	
	networks, deep learning neural networks,	
	extreme learning machine model.	
	Unit IV: Introduction to Fuzzy Logic,	
	Classical Sets and Fuzzy sets: Classical sets,	
	Fuzzy sets. Classical Relations and Fuzzy	
	Relations: Cartesian Product of relation,	
	classical relation, fuzzy relations, tolerance	
	and equivalence relations, non-iterative	
	fuzzy sets	
	Unit IV: Membership Function: features of	18
November	the membership functions, fuzzification,	10
November	methods of membership value	
	assignments. Defuzzification: Lambda-cuts	
	for fuzzy sets, Lambda-cuts for fuzzy	
	relations, Defuzzification methods. Fuzzy	
	Arithmetic and Fuzzy measures: fuzzy	
	arithmetic, fuzzy measures, measures of	
	fuzziness, fuzzy integrals.	
	, ,	
	Unit V: Fuzzy Rule base and Approximate	
	reasoning: Fuzzy proportion, formation of	
	rules, decomposition of rules, aggregation	
	of fuzzy rules, fuzzy reasoning, fuzzy	
	inference systems, Fuzzy logic control	
	systems, control system design,	
	architecture and operation of FLC system,	
	FLC system models and applications of FLC	
	System. Genetic Algorithm: Biological	
	Background, Traditional optimization and	
	search techniques, genetic algorithm and	
	search space, genetic algorithm vs.	
	traditional algorithms, basic terminologies,	
	simple genetic algorithm, general genetic	
	algorithm, operators in genetic algorithm,	
	stopping condition for genetic algorithm	
	flow, constraints in genetic algorithm,	
	problem solving using genetic algorithm,	
	the schema theorem, classification of	
	genetic algorithm, Holland classifier	
	systems, genetic programming, advantages	
	and limitations and applications of genetic	
	algorithm. Differential Evolution Algorithm,	
	Hybrid soft computing techniques – neuro	
	– fuzzy hybrid, genetic neuro-hybrid	
	systems, genetic fuzzy hybrid and fuzzy	
	genetic hybrid systems.	